Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Yeast ; 40(12): 640-650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37997429

RESUMO

Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.


Assuntos
Hanseniaspora , Hanseniaspora/metabolismo , Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Nitrogênio/metabolismo
2.
Curr Res Microb Sci ; 3: 100129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909624

RESUMO

Yeasts of the genus Hanseniaspora gained notoriety in the last years due to their contribution to wine quality, and their loss of several genes, mainly related to DNA repair and cell cycle processes. Based on genomic data from many members of this genus, they have been classified in two well defined clades: the "faster-evolving linage" (FEL) and the "slower-evolving lineage" (SEL). In this context, we had detected that H. vineae exhibited a rapid loss of cell viability in some conditions during the stationary phase compared to H. uvarum and S. cerevisiae. The present work aimed to evaluate the viability and cell cycle progression of representatives of Hanseniaspora species along their growth in an aerobic and discontinuous system. Cell growth, viability and DNA content were determined by turbidity, Trypan Blue staining, and flow cytometry, respectively. Results showed that H. uvarum and H. opuntiae (representing FEL group), and H. osmophila (SEL group) exhibited a typical G1/G0 (1C DNA) arrest during the stationary phase, as S. cerevisiae. Conversely, the three strains studied here of H. vineae (SEL group) arrested at G2/M stages of cell cycle (2C DNA), and lost viability rapidly when enter the stationary phase. These results showed that H. vineae have a unique cell cycle behavior that will contribute as a new eukaryotic model for future studies of genetic determinants of yeast cell cycle control and progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA